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Several oncogenes have been demonstrated to sensitize cell%%
to apoptosis. Thus, specific apoptosis inducers in cells expressing; 3
such oncogenes may be useful as anticancer agents for treating 4
certain types of tumors. In the course of our screening for specific 15
apoptosis inducers in transformed cells, we isolated a novel 20- 16

membered macrolide, apoptolidid)( from Nocardiopsissp. 1
induced apoptotic cell death in rat glia cells transformed with
the adenovirus E1A oncogen@Cso 11 ng/mL) but not in normal
glia cells or normal fibroblasts (Kg >100 ug/mL). In the
previous papef,we described the production, isolation, physi-
cochemical properties, and biological activity bf We report
here the structure elucidation dfbased on NMR spectral data
in CD;0D.

The molecular formula ol was determined to besgHqO2;
from high-resolution FABMSIj¥z1151.6357 (M+- Na)", A+1.5
mmu]. The®3C NMR spectrum confirmed the presence of 58
carbons and the HMQC spectrum established all one-Bnd
13C connectivities (Table 1). COSY and HMBC experiments
generated a polyketide chaiB) (and three hexose8<5) as the
partial structures (Figure 1). Methanolysis (1% HCI-MeOH, 50
°C, 30 min) of1 followed by hydrolysis yielded-oleandrosg
(5), L-olivomycosé (4), and a novel sugar, 6-deoxy@methyl-
L-glucosé (3). Their anomeric configurations thwere identified
asp for 5 anda for 3 and4 by the proton coupling constants
(Table 1).

Long-range correlations from 19-H to C-1 and from 25-H to

C-21 constructed a 20-membered macrolide ring and a six-
membered hemiketal ring, respectively. The three glycosidic
linkages were formed on the basis of long-range couplings

between tH and C-9, I-H and C-27, I'-H and C-4, and 4-H
and C-1". High-field carbon shifts for the allylic methyls (Table
1) and a large vicinal coupling constank{;; = 15.0 Hz)
indicated all E) configurations for the five olefinic bonds, which

were confirmed by a NOESY experiment as shown in Figure 2.
A clue to the absolute stereochemistry of the macrolide ring

was found between the 6-deoxyatmethyl4 -glucose moiety and
the vicinal ring methinesJ§_o = 9.0 Hz). Their configurations
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Table 1. *3C (125 MHz) and*H (500 MHz) NMR Data for
Apoptolidin in CD;0OD
no. Oc On no. Oc oy (J=Hz)
1 172.7 1 96.0 4.85(3.5)
2 123.7 2 73.6 3.44(9.0,3.5)
3 149.2 741 3 74.9 3.76 (9.0, 9.0)
4 133.1 4 87.4 2.76 (9.0, 9.0)
5 147.0 6.23 5 68.2 3.78(9.0, 6.5)
6 1334 6 18.4 1.29 (6.5)
7 1429 527 40Me 61.1 3.61
8 38.9 2.79
9 84.2 3.87 T 99.5 4.97 (4.0)
10 126.4 5.26 2 455 1.96 (13.0)
141.2 6.21 1.84 (13.0, 4.0)
134.8 3 73.0
133.3 571 4 85.8 3.37(9.5)
24.7 2.50,2.09 '5 67.4 3.70(9.5, 6.0)
36.4 1.52,1.44 '6 19.0 1.25(6.0)
74.6 3.47 3-Me 229 1.36
17 83.8 2.75
18 38.4 2.20,1.78 '1 101.9 4.86(11.5,1.0)
19 72.4 5.32 2 37.2 2.47(12.0,5.0, 1.0)
20 75.4 3.57 1.32 (12.0, 11.5, 11.5)
21 101.3 3 82.0 3.21(11.5,9.0,5.0)
22 36.4 2.08 vy 77.1 3.01(9.0,9.0)
23 73.8 3.76 g 73.2 3.24(9.0, 6.0)
24 40.6 1.76 6 18.4 1.31(6.0)
25 69.4 3.99 3-OMe 57.4 3.46
26 37.2 1.62,1.49
27 76.8 3.48
28 76.8 3.36
2-Me 142 2.14
4-Me 18.0 2.21
6-Me 16.6 1.97
8-Me 18.4 1.17
12-Me 122 1.71
22-Me 12.4 1.06
24-Me 5.3 0.92
17-OMe 61.4 3.40
28-OMe 59.5 3.30

Figure 1. Structure and partial structures of apoptolidin. Bold lines show
proton spin networks and arrows shéW—13C long-range correlations.
were identified as (B,9R) based on NOEs from'81 to 8-Me
and from 1-H to 9-H and 10-H. Significant NOEs between
9-H and 11-H, 11-H and 13-H, and 13-H and 16-H established
stereochemical relationships from C-9 to C-16 and a loop-type

.conformation for C-13 to C-16. A carbon chain representing C-15

to C-20 was required to be in a zigzag-type conformation by
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Figure 2. NOESY data summary for apoptolidin. Arrows indicate
significant (solid) and less significant (dashed) NOEs. NOEs between
vicinal protons are not shown.

Figure 3. Superposition of 10 structures derived from DADAS of
apoptolidin without the oleandrose moiety.

The stereochemistry of thus obtained was confirmed by
distance analysis in dihedral angle space (DADAS)ng a JEOL
MolSkop system, which gave 10 final structures (Figure 3) starting
with 100 randomly generated structures. Among the 10 structures,
all possible pairs showed root-mean-square deviation (RMSD)
values in the range of 0.33.54 A, and none had NOE or van
der Waals distance violations larger than 0.28 A.

NOEs between 15-Hand 17-H, 16-H and 18-5117-H and 19-
H, and 18-H and 20-H. In this conformation, the two large
coupling constantsJ(7-1g, = 10.0 Hz andJiga19 = 11.5 Hz)
revealed an anti relationship for 17- and 19-oxygens. The most
important NOE was observed between 3-H and 17-H to fix the
macrolide ring conformation including a conjugated-carbonyl
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